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Abstract. Statistical-mechanical problems of principle associated with long-time correlation 
are discussed using the example of retarded Brownian motion. The well known ‘stochastic’ 
solutions are quoted and the fundamental inadequacies of the Fokker-Planck solutions to 
the problem demonstrated. 

An alternative is to adopt Edwards’ concept of a ‘Lagrangian’ phase space with a 
Langrangian Fokker-Planck equation. Within this extended phase space, problems of 
history dependence, non-separation of time scales and non-exponential decays are solved 
consistently. In the present case the t -3’2 results are trivially re-obtained, but the principles 
for the solution of more complex problems involving long correlations are illuminated (e.g. 
time decay of turbulent fluctuations). 

Considering the role of the fluctuation-dissipation theorem the character of the 
asymptotic solution in the Brownian problem is obtained. Examination of this result allows 
two scattering experiments to be proposed to observe this power-law correlation in velocity. 

1. Introduction 

The Langevin equation for the velocity u ( t )  of sphere of radius R moving in a fluid of 
density p and kinematical viscosity v is 

where 

(U = 6.rrpR2(v/.rr)”* 

p = 6.rrpvR 

m* = m +3.rrpR3 

and m is the sphere mass. 

problem (Chandrasekhar 1943) in which the velocity correlation is exponential: 
For the case of only Stokes drag (CY = 0, m* = m) we have the well known Einstein 

d ( t )  = < u ( t ) .  u(O)> 

= 3kT/m e-A‘ 
where 

A = 6.rrvpR/m. 

Considering inertial effects in the fluid (Landau and Lifshitz 1959) we have ((U # 0, 
m + m*) a non-Markoff stochastic problem. The velocity correlation is now long-lived 

0305-4470/79/091511+09$01.00 @ 1979 The Institute of Physics 1511 



1512 it4 Warner 

and dies like t - 3 / 2 .  This has been observed in hard-sphere systems by Alder and 
Wainwright (1970), who pictured the longer correlation as resulting from vorticity 
diffusion out from the sphere. The t-3’2 law is obtained straightforwardly in stochastic 
approaches (see Giterman and Gertsenshtein 1966, Zwanzig and Bixon 1970, or for a 
review, Pomeau and Reisibois 1975). It is important to notice that the random force 
f ( t )  must obey the fluctuation-dissipation (FD) theorem (Kubo 1966). Hence in Fourier 
space (with w conjugate to t )  we define h ( w )  by 

h ( w ) = ( f ( w )  . f ( - w ) >  

where h ( U )  must satisfy 

h ( w )  = 2m* Re[((w)]d(t = 0) 

where t ( w )  is the frequency-dependent dissipation term implied in (1). 4(t  = 0) is 
3kT/m* by equipartition (m*  since we consider the bare sphere plus the effective mass 
enhancement from the fluid to be one mode). 

t ( w )  = p for the Stokes case. The extra coherency introduced intof in the a # 0 case 
gives 

h ( w )  =6kT(P+c~ylwl’/~) ( 2 )  

with y = (-;)!/he 
The diffusion constant is unaltered (Hinch 1975) by the introduction of the inertial 

terms into the hydrodynamics and hence the long-time behaviour of the position 
correlation function w ( t )  is unchanged: 

w ( t )  = (“1 
= 6Dt 

D = kT/mh. (3) 

In § 2 we shall discuss the statistical-mechanical problems in the analysis of such 
motion. A phase space is developed following Edwards (1964), in which we can use the 
Fokker-Planck (FP) formulation. In § 3 the consequences for light and neutron 
scattering are discussed. The difficulties of measuring this effect directly by light 
scattering are shown and an indirect method is suggested as an alternative. 

2. Statistical-mechanical implication 

The treatment of the Einstein problem within statistical mechanics is via the Fokker- 
Planck equation 

[(alar) - D,]P(u, r )  = 0 (4) 

where D. is the diffusion operator and P(u, t )  the time-dependent probability dis- 
tribution function. for U. 

A derivation of (4) from a master equation (Chandrasekhar 1943) requires a 
separation of time scales between the variablesf(t) and u( r ) .  That is, on the time scale of 
correlations of u( t ) ,  f ( r )  must appear to be delta-correlated. 
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This can be interpreted physically as follows. Equation (4) tells us that the dis- 
tribution P ‘drives’ the dynamics. The diffusion operator in (4) is 

which for equilibrium (a/& = 0) gives the Maxwell distribution 

Peq(u) -exp(-mu2/2kT). 

Small deviations away from Peg(u) give a finite result when operated on by D, and hence 
provide the dynamics. In a microscopic sense equilibration is reached by the action of 
the forces f ( t ) ,  and over times long compared with the f correlation time we can 
consider states of quasi-equilibrium. A free energy is hence defined, and can be 
considered as giving rise to a ‘thermal force’ driving the system back to equilibrium. We 
additionally note that (4) has a simple pole structure, 

(4’) (iw +D,)P(u, w )  = 0, 

and hence the correlation functions have a simple exponential behaviour in time. This is 
not the case in the present problem. 

What one must not do in the framework of (4) is ask questions about time 
development over times short compared with the equilibration of P (that is, when there 
is no thermal force). Hence if the correlation off is long on a hydrodynamic time scale 
(that is of U )  then (4) breaks down altogether. Here we wish to generalise the FP 
equation to non-exponential time decays where the above theory fails. (The failure of 
the above approach has been noted by other authors-see Fox (1977) for a different 
viewpoint. Fox notes that the non-Markoffian nature of the Langevin equation causes 
one to lose the essential FP character of equations describing diffusion in velocity 
space.) 

We generalise the above by noting that the conventional phase space is Hamil- 
tonian. U is not u(t)  and P is only P(u,  t ) .  (This is seen when one looks at the definition 
of P as 

P(u, t )  = (S(U - U(t ) ) )  

where U ( t )  is an actual trajectory of the particle and one averages over the ensemble of 
particles and forces f . )  For f delta-correlated the problem is Markoff (history indepen- 
dent) and the instaneous phase space is appropriate. This is, however, the very point of 
inadequacy in the present problem where U ( t )  depends on U(t’)  (t’ some earlier time) 
and we must follow the system in time in order to handle the history dependence. 

We thus take a Lagrangian phase space u(t) with a distribution function P(u(t) ,  t ) .  
The phase space is now extended since it covers each instant in time and problems 
become functional in nature. In the turbulence problem Edwards calls this ‘Lagrangian 
statistical mechanics’. Mazo (1971) and Chow and Hermans (1972) take an opposite 
view in which they put a time label on derivatives taken in a conventional Hamiltonian 
phase space: (d/au)l , .  This is not within the philosophy of Kirkwood ‘plateau values’. 

Phase-space variables u(t)  will be carefully distinguished from stochastic variables 
U ( t ) .  For a definite system we have (on Fourier transforming (1)) 

(iwm*+P +iavw/)wt”*)U(w)-f(w) = 0. (1’) 
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The probability of finding this definite value in phase space is 

P ( u ( w ) )  = S ( u ( w ) -  V ( w ) ) .  ( 5 )  

XP=O (6) 

where X is the left-hand side of (1’). This is an equation for each frequency w .  One can 
add together the infinity of equations (6) in such a way that the moments of (6) are 
preserved: 

An equation for P is then 

[dw (S/Su(w)){[iwm* + P  + ( i a y w / l w l ” 2 ) ] ~ ( ~ ) - f ( w ) } P ( u ( o ) )  = 0. (7) 

This ‘Lagrangian Liouville equation’ can be reduced to a FP equation by averaging over 
all forms of the random force f ( w ) .  We take the force to be truly random with arbitrary 
correlation : 

P ( f ( t ) )  -exp(-1 dt dr’$f(t)h-’(t-t’) . f ( f ’ ) ) ,  (8) 

where, as before, 

( f ( t )  . f ( t ’ ) )=h( t - t ’ ) .  

Averaging of (7) over (8) is trivial (Edwards 1964) and gives 

where (P) denotes the distribution function averaged over f and 

n ( w )  = iwm* + P + ia yw/Iw 

We call this a Lagrangian FP equation. 
The second moment of (9) is the correlation function 

(9) 

4 ( w )  = h(w)/fl(w)fl*(w). (10) 

In the simple pole case the full upper- and lower-half-plane behaviour is presented by SZ 
and fl* respectively (giving the Einstein correlation functions). In the non-Markoff case 
the singular nature of fl and h will give the non-exponential (in our case t W 3 / * )  
behaviour. 

Thus the Lagrangian FP equation overcomes the usual conceptual obstacles 
involved in ‘non-separation of time scales’ problems in irreversible thermodynamics. It 
presents an arguably simpler alternative to the memory function/generalised Langevin 
techniques otherwise developed for non-Markoff systems. The method also has the 
conceptual advantage and appeal that it extends the well known convenrional apparatus 
of phase space and thus the derivation of the FP equation closely follows, say, 
Chandrasekhar (1943). The non-exponential behaviour occurs in a natural and 
functionally simple way as is seen in equation (10). 

The analysis from equation (10) to get the autocorrelation function 4 is easily 
completed below. q5 becomes 

4 ( w )  =6kT/P . . 
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(with the first term the usual w = O  result of the Einstein model confirming that D is 
unaltered). 

The long-time behaviour is dominated by the singularities in the w plane that are 
closest to the origin (Lighthill 1975.). Hence back Fourier transformation of the 
generalised functions gives immediately the t-’12 law. It is also interesting to transform 
more terms in ( 1  1 )  to see that C#J involves t-’”, t-”2 , . . .. 

One can also get an estimate of when the t-’12 term dominates over other power-law 
dependence. This is after times tb where 

tl, = 3 1 5 a 2 y 2 / ~  - m * ( / P  

1 
2 v r R p  

- -- 1157~R’p-m*).  

For spheres of density p s ,  which is of the order of p ,  one has 

t ;  = 1 3 R 2 / 2 v  

and for p s  >>p  one has 

t; = R 2 [ 4 ( p s / p )  - 4 3 ] / 6 v .  

3. Consequences for scattering 

3.1. Light scattering 

We now return to the position autocorrelation function w ( t ) :  

w ( t )  = CWt)  -“). 

b?(t) = 24(t) .  
Using the stationarity of the random process one gets (on doubly differentiating) 

The three functions w ( t ) ,  k( t )  and w ( t )  are plotted schematically in figures l ( a ) - ( c ) .  
In figure l ( a )  we see that the hydrodynamic effects lead to long-time modifications 

to the Einstein form. After two integrations we see in figure l ( c )  that the hydrodynamic 
effects lead to modifications in the short-time behaviour. (The long-time behaviour is 

Figure 1. Correlation functions ( a )  0, ( b )  w and ( c )  w for Brownian motion. The broken 
curves in ( a )  and ( b )  are the Einstein result, and in ( c )  the line 601. 
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w( t )=6Dt-c  and the constant c, being the deviations from the broken curves, is 
insignificant at long times.) 

In a dynamical light-scattering experiment the time-scattering function is commonly 
measured ( k  is the scattering vector): 

~ ( k ,  t )  = (N- ’  1 exp[ik. (Ri(t) - R ~ ( o ) ) ] ) .  
ij 

For a sufficiently dilute solution of scatterers this reduces to 

S(k, t )  = (exp[ik. (R(r) -R(O))])  

where R( t )  is the coordinate of the scatterer. Averaging one gets 

S ( k ,  t )  = exp(-ik2w(t)). 

Hence one cannot observe C#J directly by light scattering and it is clear that an analysis of 
the shape of S ( k ,  t )  at short times will be necessary to detect ‘hydrodynamic’ cor- 
relation. 

There will be ’rounding’ in S(k, t )  as seen from 

(13) 
(see figure 2 for a sketch of this). Rounding can be caused by either (i) finite velocity 
correlation over times to as seen in the Einstein model or (ii) longer-lived correlation 
due to hydrodynamic effects. We suggest an indirect experiment to distinguish between 
the two effects. 

1 2 1  2 2 S ( k ,  t )=gk (gk w ( t ) -  G ( t ) )  exp(-kk2w(r)) 

t 

I t 

Figure 2. The intermediate scattering function S(k, 0 showing ‘rounding’. 

3.1.1. The Einstein model. From (13) we have S < 0 for ak2k2 < w. Using the Einstein 
result w = (6kT/m) e-*‘ we get S <  0 for times t < t6, 

with B = 6kTk2/mh ’. For 8 small this gives us 

t6 = -A-’ In ( e )  - -2A-’  In (k)  

and this governs the boundary of the rounded region of S(k ,  t )  as k varies. 
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3.1.2. The hydrodynamic model. Examination of figures 1 show that it is possible to 
satisfy i k 2 / k 2 ( t ) <  w( t )  for much longer times since w ( t )  remains large longer than in 
the Einstein case. Hence we would expect to observe rounding in S(k, t )  for much 
longer times, t;l' say. 

It is possible to estimate tli' by noticing that the scales in figures l (a )  and l (6 )  are 
very different. In fact, comparing w ( t  = 0) with kk2w2(t = 031, that is with 6D2k2,  we 
have 

6kTlm: ;(6kT/mA)'k2- 1: lo-' 

(for, say, 1p,m particles and k -2  x 
value for w ( t )  will be small and we hence estimate for r;i' 

m). Thus the error in taking the asymptotic 

instead of the logarithmic variation predicted by the Einstein theory for tl; (where 
A = 6kTay2 /2 rg2  is taken from the expression following (11)). 

Experimentally one should decide where the rounding finishes and rather plot this 
as a function of k.  This is in contrast to the more exacting curve-fitting procedure of 
Boon and Bouiller (1976), where the effect has to be seen after the two integrations 
involved in getting from 4 to w. Some typical numbers are presented in the appendix. 

3.2. Neutron scattering 

Here one more commonly observes in the frequency domain. An incoherent cross 
section is of interest since we wish to follow the correlation of one particle with itself. 
That is 

S i n c o h ( k ,  w )  = [dr(exp[ik. (R(t) - R(0) ) ] )  eXp(-iwt) 

This classical picture ignores recoil and is reasonable in a Brownian regime. A suitable 
system would be a heavy incoherent scatterer dissolved in a coherently scattering fluid. 
For example, an organic gold complex with hydrogen present in CS2 would give 
excellent contrast and a mass ratio of several hundred. 

Returning to (13), letting k + 0 and Fourier transforming one gets 

u 2 S i n c o h ( k ,  w )  = kkz[ exp(-iwt)24(t) exp(-ik2w(t)). 

Further, if k is small enough, we can ignore ikzw(t)  at times where 4(r) still gives a 
contribution and we get 

Hence one could expect to observe the singular behaviour of 4 by going to low enough k 
and frequencies w C w b  - 2 r l t b .  Care has to be taken that for a given w, k is low 
enough that the conditions for the above derivation to hold are met. The fact the 
solution (1 1) for 4 has several known terms in it enables one to estimate where to look 
experimentally. Lack of this estimate has hitherto held up the planning of such 
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W 

Figure 3. The expected form of 4(0) from neutron scattering. 

experiments. Insertion of typical numbers suggest this experiment would be very 
difficult. 

4. Conclusions 

We have only discussed briefly the retarded Brownian motion problem within the 
generalised Langevin formalism. It is important, however, to realise the significance of 
the fluctuation-dissipation theorem and the role of the enhanced mass m*. We show 
that the consideration of these and the use of generalised Fourier analysis provide a 
simple estimate of when the r-”’ term is dominant in 4 and also gives the other powers 
of f involved in the solution. This information appears to be of interest in the planning 
of a neutron experiment. 

The limitation of conventional FP transport theory to regimes where one has 
time-scale separation and exponential decays is pointed out. As an alternative to this 
formalism one can use Edwards’ generalisation of phase space to a ‘Lagrangian phase 
space’. This retention of the concept of phase space in a generalised and powerful form 
allows us to generalise the FP formalism in which we have the possibility of non- 
exponential decays. In fact, the method presents in a direct way the singularities which 
are responsible for the interesting behaviour. It is envisaged that such a formalism is 
required more generally to allow FP transport theory to move away from the limitations 
of simple pole behaviour. 

It is hoped that scattering experiments which have hitherto been rather inconclusive 
in observations of this effect will now proceed by the indirect method suggested. We 
expect the experiments to be difficult to perform. 
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Appendix 

For the case of light scattering from polystyrene spheres in water we present some 
typical experimental numbers. 

Water: v = m2 s-'; 
polystyrene: R = m, p = lo3 kg m-3. Hence 

A = 5 X lo6 S-' to = 2 x io-' S( = I / A )  D = 2 x 10- l~  m2s-' 

(for T = 300 K). 
The scattering vector is given by 

k = 47r sin (;$)/A, 

where A,, the wavelength, is 7000 A, say. 6 is the scattering angle. For a low-angle 
experiment we have 

k - 2 x  lo6 m-' 

- 1 O A - I  

t6 = - A - '  In (kTk2 /mA2)  

The time t; over which the t -3 i2  tail shows in C#J is 

tb - 29to - 5.8 x S. 

2 2 i 3  -413 The time t;S' = ( A / D  ) k for the hydrodynamic rounding in S(k, t )  is 

t;l' - (io2, io3)tb - 1 0 - ~  

(depending on the values of k). The different effects seem to be well separated in their 
time scales. 
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